Así se mueven las estrellas alrededor del agujero negro de la Vía Láctea: Telescopios en Chile capta las imágenes más profundas de este celestial movimiento

d
Vista de la constelación de Sagitario (el Arquero) en el centro de la Vía Láctea, donde se captó el movimiento de las estrellas. Foto: ESO

Un instrumento del VLT en Paranal, en la región de Antofagasta permitió obtener las imágenes más profundas y nítidas hasta la fecha de la región que hay alrededor del agujero negro supermasivo ubicado en el centro de nuestra galaxia.


“Queremos aprender más sobre el agujero negro del centro de la Vía Láctea, Sagitario A: ¿cuán masivo es exactamente? ¿Rota? ¿Se comportan las estrellas de su alrededor tal y como predice la teoría general de la relatividad de Einstein? La mejor manera de responder a estas preguntas es seguir a las estrellas en órbitas cercanas al agujero negro supermasivo. Y aquí demostramos que podemos hacerlo con la mayor precisión alcanzada hasta ahora”, explica Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE) en Garching (Alemania), quien recibió un Premio Nobel en 2020 por la investigación de Sagitario A*. Los últimos resultados de Genzel y su equipo, que amplían su estudio de tres décadas de estrellas que orbitan el agujero negro supermasivo de la Vía Láctea, se publican hoy en dos artículos en la revista Astronomy & Astrophysics.

En una búsqueda para encontrar aún más estrellas cerca del agujero negro, el equipo, conocido como la colaboración GRAVITY, desarrolló una nueva técnica de análisis que les ha permitido obtener las imágenes más profundas y nítidas de nuestro Centro Galáctico. El VLTI nos da esta increíble resolución espacial y, con las nuevas imágenes, alcanzamos una profundidad nunca lograda antes. Estamos atónitos por su cantidad de detalles, y por la actividad y el número de estrellas que revelan alrededor del agujero negro”, explica Julia Stadler, investigadora del Instituto Max Planck de Astrofísica en Garching, quien dirigió los esfuerzos del equipo para la obtención de imágenes durante su etapa en MPE. Sorprendentemente, encontraron una estrella, llamada S300, que no se había visto anteriormente, lo que demuestra cuán potente es este método cuando se trata de detectar objetos muy débiles cerca de Sagitario A *.

Nobel Prize in physics winner German scientist Reinhard Genzel poses in Munich
Reinhard Genzel, director del Instituto Max Planck de Física Extraterrestre (MPE) en Garching (Alemania) y Nobel de Física 2020. Foto: Reuters

Con sus últimas observaciones, realizadas entre marzo y julio de 2021, el equipo se centró en realizar mediciones precisas de las estrellas a medida que se acercaban al agujero negro. Esto incluye a la estrella S29, que ostenta el récord, ya que hizo su aproximación más cercana al agujero negro a finales de mayo de 2021. Pasó a una distancia de solo 13.000 millones de kilómetros, aproximadamente 90 veces la distancia Sol-Tierra, a la impresionante velocidad de 8.740 kilómetros por segundo. Nunca se ha observado que ninguna otra estrella pase tan cerca o viaje tan rápido alrededor del agujero negro.

Las mediciones e imágenes del equipo fueron posibles gracias a GRAVITY, un instrumento único que la colaboración desarrolló para el VLTI de ESO, ubicado en Chile. GRAVITY combina la luz de los cuatro telescopios de 8,2 metros del Very Large Telescope (VLT) de ESO utilizando una técnica llamada interferometría. Esta técnica es compleja, “pero al final se obtienen imágenes 20 veces más nítidas que las que obtendríamos utilizando los telescopios del VLT de forma individual, revelando los secretos del Centro Galáctico”, afirma Frank Eisenhauer, del MPE e investigador principal de GRAVITY.

d
Esta imagen muestra estrellas orbitando muy cerca de Sgr A* (centro), el agujero negro supermasivo que se encuentra en el corazón de la Vía Láctea. Se obtuvieron a finales de junio de 2021 con el instrumento GRAVITY, instalado en el Interferómetro del Very Large Telescope (VLTI) de ESO. Foto: ESO

Seguir a las estrellas en órbitas cercanas alrededor de Sagitario A* nos permite sondear con precisión el campo gravitacional que hay alrededor del agujero negro masivo más cercano a la Tierra, probar la Relatividad General y determinar las propiedades del agujero negro”, explica Genzel. Las nuevas observaciones, combinadas con los datos anteriores del equipo, confirman que las estrellas se comportan tal y como predice la Relatividad General para los objetos que se mueven alrededor de un agujero negro con una masa de 4,30 millones de veces la del Sol. Se trata de la estimación más precisa de la masa del agujero negro central de la Vía Láctea hasta la fecha. El equipo de investigación también logró ajustar la distancia a Sagitario A*, determinando que se encuentra a 27.000 años luz de distancia.

Para obtener las nuevas imágenes, el equipo utilizó una técnica de aprendizaje automático, llamada Teoría de Campos de la Información (Information Field Theory). Hicieron un modelo de cómo pueden ser las fuentes reales, simularon cómo las vería GRAVITY y compararon esta simulación con las observaciones de GRAVITY. Esto les permitió detectar y rastrear estrellas alrededor de Sagitario A* con una profundidad y precisión incomparables. Además de las observaciones con GRAVITY, el equipo también utilizó datos de NACO y SINFONI, dos antiguos instrumentos del VLT, así como mediciones del Observatorio Keck y el Observatorio Gemini de NOIRLab, en los Estados Unidos.

Vea en el video la recreación del movimiento de las estrellas:

GRAVITY se actualizará a finales de esta década a GRAVITY+, que también se instalará en el VLTI de ESO, aumentando aún más su sensibilidad para detectar estrellas aún más débiles y más cercanas al agujero negro. Finalmente, el equipo tiene como objetivo detectar estrellas tan cercanas que sus órbitas sientan los efectos gravitacionales causados por la rotación del agujero negro. El próximo Telescopio Extremadamente Grande (ELT) de ESO, en construcción en el desierto chileno de Atacama, permitirá al equipo medir la velocidad de estas estrellas con una precisión muy alta. “Combinando las capacidades de GRAVITY + y el ELT, podremos descubrir la velocidad a la que gira el agujero negro”, afirma Eisenhauer. “Hasta ahora, nadie ha sido capaz de hacerlo”.

Comenta

Por favor, inicia sesión en La Tercera para acceder a los comentarios.